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Summary

Critical cracks can form along or near the interface between two rubbery particulate composite materials.
Damage near these cracks can affect the shape and size of the crack tip fields in the two materials. In this study,
finite elements are used to simulate damage near an interfacial crack tip to discover how this damage affects the
crack tip fields. The effects of damage zones of different sizes on the magnitude and phase angle of the complex
stress intensity factor are studied.

Modeling Aspects

Finite elements are used to study damage effects near an interfacial crack tip. The description of
interfacial fracture involves complex variables and inherent mode mixity. Conventional finite element packages
seldom solve for the individual components of the complex stress intensity factor, and the use of interaction
integrals or a modified virtual crack extension method is often needed to fully characterize K. However, for this
work, a method often referred to as the semi-energetic method is used because it is easy to understand and
implement [1]. However, to use this method, a fine mesh is required near the crack tip. Because of this, the
finite element models used in this study have a fine spider web mesh near the crack tip. The innermost element
ring has quadrilateral elements that are degenerated into triangular elements with side nodes at the quarter point
position. The coincident nodes at the crack tip have all been equivalenced. The element rings are radially biased
so that the element lengths are all related to the innermost ring by L; = (i + 2)L,. The use of a graded mesh such '
as this avoids use of an excessive number of elements but still gives reasonable refinement near the crack tip.

The remainder of the mesh is relatively coarse; the specimen has large dimensions to prevent boundaries
from interacting with either the damaged regions or the crack tip. The different loadings were applied using
traction boundary conditions on the top surface and fixed displacement conditions on the bottom surface.
Figure 1 shows a typical finite element model and the related boundary conditions (the damaged regions are
shown in Figure 2).

Analysis of data

The analysis uses the semi-energetic method to determine the stress intensity phase angles and the
domain integral method to determine the magnitude. A brief explanation of interfacial fracture mechanics is
necessary. A paper by Williams in 1959 discussed stress fields near an interfacial crack tip and paralleled a
previous analysis for a crack in a single material [2]. The problem is posed as a boundary value problem with
traction free crack faces and continuity of tractions and displacements across the bonded part of the interface.
This results in an eigenvalue problem with eight unknowns, the solution of which is described by its
characteristic polynomial. The analysis becomes unusual at this point, because the roots of this characteristic
polynornial are complex. The imaginary part of the roots of the characteristic polynomial is referred to as }; by
Williams and is later called the bimaterial parameter ¢ by other authors. The value depends on the elastic
constants of the two materials and the stress state.
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Material | Young’s modulus | Poisson’s
[kPa] ratio
Material 1 2784 0.5
Material 2 5568 0.5
Damaged 696 0.5

Figure 1 — Specimen geometry and material properties

Damage zones shown are in material 1, and have edge lengths of 3.175,
6.35, and 12.7 mm

The roots of the characteristic equation (4, + iA)) form an infinite series, so the Airy stress equation is an
infinite series, with each series term containing a complex coefficient. Very near the crack tip, the first term, being
proportional to » ?, eclipses all of the higher order terms. Therefore, the displacements, strains, and stresses near
the crack tip can be described adequately by this single term, and these field expressions are referred to as
asymptotic or near-tip field expressions. The coefficient of the first term is equal to K, the stress intensity factor

for an interfacial crack (within a multiplicative constant), and relates to the stresses along the interface ahead of

the crack tip through:
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Here K’is the complex stress intensity factor, r is the radial distance from the crack tip, ¢ is the bimaterial
parameter, and o,, and o, are normal and shear stress components. The stress intensity factor here is the
normalized one proposed by Rice and has dimensions of (stress v length); the length scale used for normalization
is the arbitrary dimension 4 (in this work, /# was taken as the crack size, 6.35 mm) [3]. The displacements near
the crack tip are also asymptotic field expressions; in the unloaded body points on the top and bottom crack
surfaces will be adjacent, but move apart on loading. The relative crack flank displacement vector defined as:

6 = Sy + i, = (uy + iU ). = (uy + U)o, o (2)

Here the relative crack flank displacement vector J has normal and shear components d, and d, and the terms
in parentheses describe the top and bottom surfaces of the crack, respectively. The complex vector J is
related to K and r and this relationship is used in the semi-energetic method by expressing it in terms of
magnitudes and phase angles. The magnitudes of K and § are related by [1]:
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Here E* is given by 1/E* = (1/E, + 1/E,)/(2 cosh(n €)); E, and E, are Young’s moduli for the two
materials under plane stress conditions and E /(-0 /) and E/(I-v;?) for plane strain conditions (v is Poisson’s
ratio). Also, if we denote the phase angles of K, 4, and 1 + 2ie by ", ¢, and f, respectively, then [1]:
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Finally, there exists a relationship between the J integral and the magnitude of K’ [1]:

K| = TE" ' ®)

The above equations show that there are two alternative methods to determine |K'|. Equation (5) is easy
to use because finite element programs frequently give values for the J integral. This is because the methods used
to calculate J are surface integrals (in two dimensions) or volume integrals (in three dimensions), and so are easy
to implement in finite element calculations using Gaussian integration point approximations. This also makes the
calculations robust with respect to mesh structure — J is insensitive to the mesh design or its level of refinement.
So, for the results given in the next section, equation (5) was used to determine |X { (the specific method used was
the domain integral method).

. Having determined a value for the magnitude of K, the phase angle must next be determined. However,
equations (3) and (4), which are based on crack flank displacements, are only approximations since they are
somewhat mesh sensitive and vary with the choice of 7. The central premise of the semi-energetic method is that



the appropriate choice for r is that which results in the closest agreement for |K{ when calculated using equations
(3) and (5) with J already determined in an independent matter (such as the domain integral method) [1].

In practice, the J integral is first calculated using equation (5). Next, the value of |[K1{ is found for each
pair of (originally coincident) crack face nodes. The radial distance for the nodal pair where the two |K{ values
are closest becomes the value for  used in equation (4) to calculate the phase angle ¥ This is illustrated in

Figure 3.
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Figure 3 — Determining suitable radius value for phase angle
calculations :

Results

Figure 2 shows the location of the damage zones. In all cases the damage zones were located 6.4 mm in
front of the crack tip and 6.4 mm from the interface, although the size, L, of the damage zones were varied.
Damage zones in both material 1 and material 2 were considered and were modeled by assigning a reduced value
for Young’s modulus to the damaged area (1/4 of the value of material 1; the material properties are given in
Figure 1). Additionally, the loading direction, @, was varied, so that 32 separate conditions were analyzed.
Table 1 summarizes the variations in the parameters.

Table 1 — Variables considered in the analysis

Damage zone sizes considered [mm] 0.000 (undamaged), 3.175, 6.350, 12.700
Location of damage zone Damage in both materials 1 and 2 considered
Loading angle w [degrees] 0, 30, 60, 90

The way that the damage zone size affected the magnitude of K’ for the various loading angles is
summarized in Table 2. The effect of the damage zone was to increase the value of |K{, although the effects were
small except for the largest damage zone. For the large damage zone, |K{ values were elevated on the order of
20%, with similar results for damage in materials 1 and 2. In either case, the stresses are redistributed around
the damage zone so that stresses are elevated on either side of it. When the damage zone size increases, this
effect is intensified. Figures 4a and 4b show this phenomena for the large damage zone located in material 1;




Table 3 — Change in phase angle of stress intensity factor compared
with results for undamaged specimen

Damage in material 1 (top material)

Loading 0° 30° 60° 90°

L, size of angle ®

damage zone [mm]
3.175 0.28 0.16 0.44 0.06
6.350 0.97 0.50 0.32 0.05
12.700 2.15 1.59 0.19 0.26

Damage in material 2 (bottom material)

3.175 0.26 0.08 0.08 0.08

6.350 0.96 0.31 0.17 0.24

12.700 2.43 0.63 0.08 0.76
Conclusions

The effect of damage near interfacial crack tips has been analyzed using finite element methods and
accompanying calculations using the semi-energetic method. The presence of damage near the tip of an interfacial
crack redistributes the stresses so that the stresses are raised near the crack tip, resulting in a higher value for the
magnitude of the complex stress intensity factor. The damage zones have less effect on the phase angle of the
stress intensity factor, however, because the normal and shear components are similarly affected. The size of the
damage zone is a critical factor; small damage near the crack tip has a negligible effect but larger damage zone
sizes can significantly elevate the stress intensity factor magnitude. The use of finite elements to study these
effects in a simple manner has hopefully helped to explain this influence. However, the complicated interaction
between damage and interfacial crack tips requires further study using both modeling and experimental methods.
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